z^2-(2+i)z+2i=0

Simple and best practice solution for z^2-(2+i)z+2i=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for z^2-(2+i)z+2i=0 equation:


Simplifying
z2 + -1(2 + i) * z + 2i = 0

Reorder the terms for easier multiplication:
z2 + -1z(2 + i) + 2i = 0
z2 + (2 * -1z + i * -1z) + 2i = 0

Reorder the terms:
z2 + (-1iz + -2z) + 2i = 0
z2 + (-1iz + -2z) + 2i = 0

Reorder the terms:
2i + -1iz + -2z + z2 = 0

Solving
2i + -1iz + -2z + z2 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '2z' to each side of the equation.
2i + -1iz + -2z + 2z + z2 = 0 + 2z

Combine like terms: -2z + 2z = 0
2i + -1iz + 0 + z2 = 0 + 2z
2i + -1iz + z2 = 0 + 2z
Remove the zero:
2i + -1iz + z2 = 2z

Add '-1z2' to each side of the equation.
2i + -1iz + z2 + -1z2 = 2z + -1z2

Combine like terms: z2 + -1z2 = 0
2i + -1iz + 0 = 2z + -1z2
2i + -1iz = 2z + -1z2

Reorder the terms:
2i + -1iz + -2z + z2 = 2z + -2z + -1z2 + z2

Combine like terms: 2z + -2z = 0
2i + -1iz + -2z + z2 = 0 + -1z2 + z2
2i + -1iz + -2z + z2 = -1z2 + z2

Combine like terms: -1z2 + z2 = 0
2i + -1iz + -2z + z2 = 0

The solution to this equation could not be determined.

See similar equations:

| 5+2(x-7)=3 | | 2x-9/3=10-1x/5 | | (2+2y)dx-(5-x)dy=0 | | 15+6x-3=3x-8+x | | 6=2a | | 1/2*ln(2)-ln(2) | | 5z+9=3z+7 | | 4b+1=5b-8 | | (1.5*x)+(1*x)=40000 | | 78-4x=14x+22 | | ln(3x+7)=ln(-6x+19) | | -17-4x=7x+18 | | 3-4*x=4x-7 | | 48+36=12x | | 8y+36=12x | | 8/12=y-3 | | 5x-10x=25-24x | | 4/-3 | | 28=40 | | 2y=-x+40 | | 75x^2+90x+27=0 | | 34x-541=x-7x^2 | | 6x-4=2-12x | | 34x-541=x-7x | | 2(10n+15)=10 | | 34x-5467541=x-7-7x | | 33x-12x-2x-3=x-12-x-12 | | 5/4x-3/2x+1/2=-6/5+3/5x | | 34x-5467541=x-7 | | 9x+25=5x+73 | | 3+2*7= | | 18-4x=-6x+12 |

Equations solver categories